Root system architecture (RSA) is an important measure of how plants navigate and interact with the soil environment. However, current methods in studying RSA must make tradeoffs between precision of data and proximity to natural conditions, with root growth in germination papers providing accessibility and high data resolution. Functional-structural plant models (FSPMs) can overcome this tradeoff, though parameterization and evaluation of FSPMs are traditionally based in manual measurements and visual comparison. Here, we applied a germination paper system to study the adventitious RSA and root phenology of Populus trichocarpa stem cuttings using time-series image-based phenotyping augmented by FSPM. We found a significant correlation between timing of root initiation and thermal time at cutting collection (P value = 0.0061, R(2) = 0.875), but little correlation with RSA. We also present a use of RhizoVision [1] for automatically extracting FSPM parameters from time series images and evaluating FSPM simulations. A high accuracy of the parameterization was achieved in predicting 2D growth with a sensitivity rate of 83.5%. This accuracy was lost when predicting 3D growth with sensitivity rates of 38.5% to 48.7%, while overall accuracy varied with phenotyping methods. Despite this loss in accuracy, the new method is amenable to high throughput FSPM parameterization and bridges the gap between advances in time-series phenotyping and FSPMs.
Bridging Time-series Image Phenotyping and Functional-Structural Plant Modeling to Predict Adventitious Root System Architecture.
阅读:5
作者:Parasurama Sriram, Banan Darshi, Yun Kyungdahm, Doty Sharon, Kim Soo-Hyung
| 期刊: | Plant Phenomics | 影响因子: | 6.400 |
| 时间: | 2023 | 起止号: | 2023 Dec 21; 5:0127 |
| doi: | 10.34133/plantphenomics.0127 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
