Fault Diagnosis of Wind Turbine Gearbox Based on the Optimized LSTM Neural Network with Cosine Loss.

阅读:4
作者:Yin Aijun, Yan Yinghua, Zhang Zhiyu, Li Chuan, Sánchez René-Vinicio
The gearbox is one of the most fragile parts of a wind turbine (WT). Fault diagnosis of the WT gearbox is of great importance to reduce operation and maintenance (O&M) costs and improve cost-effectiveness. At present, intelligent fault diagnosis methods based on long short-term memory (LSTM) networks have been widely adopted. As the traditional softmax loss of an LSTM network usually lacks the power of discrimination, this paper proposes a fault diagnosis method for wind turbine gearboxes based on optimized LSTM neural networks with cosine loss (Cos-LSTM). The loss can be converted from Euclid space to angular space by cosine loss, thus eliminating the effect of signal strength and improve the diagnosis accuracy. The energy sequence features and the wavelet energy entropy of the vibration signals are used to evaluate the Cos-LSTM networks. The effectiveness of the proposed method is verified with the fault vibration data collected on a gearbox fault diagnosis experimental platform. In addition, the Cos-LSTM method is also compared with other classic fault diagnosis techniques. The results demonstrate that the Cos-LSTM has better performance for gearbox fault diagnosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。