Although measuring worker productivity is crucial, the measurement of the productivity of each worker is challenging due to their dispersion across various construction jobsites. This paper presents a framework for measuring productivity based on an inertial measurement unit (IMU) and activity classification. Two deep learning algorithms and three sensor combinations were utilized to identify and analyze the feasibility of the framework in masonry work. Using the proposed method, worker activity classification could be performed with a maximum accuracy of 96.70% using the convolutional neural network model with multiple sensors, and a minimum accuracy of 72.11% using the long short-term memory (LSTM) model with a single sensor. Productivity could be measured with an accuracy of up to 96.47%. The main contributions of this study are the proposal of a method for classifying detailed activities and an exploration of the effect of the number of IMU sensors used in measuring worker productivity.
Productivity Measurement through IMU-Based Detailed Activity Recognition Using Machine Learning: A Case Study of Masonry Work.
阅读:3
作者:Hong Sungkook, Ham Youngjib, Chun Jaeyoul, Kim Hyunsoo
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2023 | 起止号: | 2023 Sep 3; 23(17):7635 |
| doi: | 10.3390/s23177635 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
