Mode Crystallography Analysis through the Structural Phase Transition and Magnetic Critical Behavior of the Lacunar Spinel GaMo4Se8

通过空穴尖晶石 GaMo4Se8 的结构相变和磁临界行为进行模式晶体学分析

阅读:4
作者:Kieran Routledge, Praveen Vir, Nicholas Cook, Philip A E Murgatroyd, Sheikh J Ahmed, Stanislav N Savvin, John B Claridge, Jonathan Alaria

Abstract

In the lacunar spinels, with the formula AB4X8, transition-metal ions form tightly bound B4 clusters resulting in exotic physical properties such as the stabilization of Néel-type skyrmion lattices, which hold great promise for energy-efficient switching devices. These properties are governed by the symmetry of these compounds with distortion of the parent noncentrosymmetric F4̅3m space group to the polar R3m, with recent observation of a coexisting Imm2 low-temperature phase. In this study, through powder neutron diffraction, we further confirm that a metastable Imm2 coexists with the R3m phase in GaMo4Se8 and we present its structure. By applying the mode crystallography approach to the distortions together with anisotropic microstrain broadening analysis, we postulate that the formation origin of the minority Imm2 phase stems from the high compressive stress observed in the R3m phase. Bond valence sum analysis also suggests a change in electronic configuration in the transition to Imm2 which could have implications on the electrical properties of the compound. We further establish the nature of the magnetic phase transition using critical exponent analysis obtained from single-crystal magnetization measurements which shows a mixture of tricritical mean-field and 3D Heisenberg behavior [β = 0.22(4), γ = 1.19(1), and δ = 6.42(1)]. Magnetoentropic mapping performed on a single crystal reveals the signature of a positive entropy region near the magnetic phase transition which corresponds to the skyrmion phase field observed in a polycrystalline sample.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。