Phenolic metabolism in Sarcandra glabra is mediated by distinct BAHD hydroxycinnamoyltransferases.

阅读:16
作者:Bömeke Paul, Petersen Maike
Sarcandra glabra (Chloranthaceae) has an elaborate phenolic metabolism, encompassing various hydroxycinnamic acid esters. This may imply that multiple hydroxycinnamoyltransferases are involved in establishing this spectrum of natural compounds. Five coding sequences from S. glabra, belonging to the superfamily of BAHD acyltransferases, have been amplified from S. glabra cDNA, and the proteins were expressed in Escherichia coli. By assaying the proteins biochemically, the main substrates of these enzymes were identified as p-coumaroyl- and caffeoyl-CoA as donor substrates together with varying acceptor substrates. SgHST mainly forms p-coumaroyl- and caffeoylshikimic acid, but also the corresponding quinic acid esters as well as amides with 3- and 5-hydroxyanthranilic acids. SgHQT1 predominantly catalyzes the formation of p-coumaroyl- and caffeoyl-5-O-quinic acid, while SgHQT2 correspondingly forms p-coumaroyl- and caffeoyl-4-O-quinic acid. To our knowledge, this is the first characterized enzyme forming cryptochlorogenic acid and its precursor p-coumaroyl-4-O-quinic acid. SgRAS synthesizes rosmarinic acid and its precursors (caffeoyl-4'-hydroxyphenyllactic, p-coumaroyl-4'-hydroxyphenyllactic, p-coumaroyl-3',4'-dihydroxyphenyllactic acids) as well as amides with aromatic d-amino acids. No substrates could be identified for the fifth sequence, SgHCT-F, which phylogenetically groups with benzyl alcohol O-benzoyltransferases. All enzymes, except SgHCT-F, were fully kinetically characterized, and their expression in different tissues of S. glabra was assessed.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。