Sarcandra glabra (Chloranthaceae) has an elaborate phenolic metabolism, encompassing various hydroxycinnamic acid esters. This may imply that multiple hydroxycinnamoyltransferases are involved in establishing this spectrum of natural compounds. Five coding sequences from S. glabra, belonging to the superfamily of BAHD acyltransferases, have been amplified from S. glabra cDNA, and the proteins were expressed in Escherichia coli. By assaying the proteins biochemically, the main substrates of these enzymes were identified as p-coumaroyl- and caffeoyl-CoA as donor substrates together with varying acceptor substrates. SgHST mainly forms p-coumaroyl- and caffeoylshikimic acid, but also the corresponding quinic acid esters as well as amides with 3- and 5-hydroxyanthranilic acids. SgHQT1 predominantly catalyzes the formation of p-coumaroyl- and caffeoyl-5-O-quinic acid, while SgHQT2 correspondingly forms p-coumaroyl- and caffeoyl-4-O-quinic acid. To our knowledge, this is the first characterized enzyme forming cryptochlorogenic acid and its precursor p-coumaroyl-4-O-quinic acid. SgRAS synthesizes rosmarinic acid and its precursors (caffeoyl-4'-hydroxyphenyllactic, p-coumaroyl-4'-hydroxyphenyllactic, p-coumaroyl-3',4'-dihydroxyphenyllactic acids) as well as amides with aromatic d-amino acids. No substrates could be identified for the fifth sequence, SgHCT-F, which phylogenetically groups with benzyl alcohol O-benzoyltransferases. All enzymes, except SgHCT-F, were fully kinetically characterized, and their expression in different tissues of S. glabra was assessed.
Phenolic metabolism in Sarcandra glabra is mediated by distinct BAHD hydroxycinnamoyltransferases.
阅读:8
作者:Bömeke Paul, Petersen Maike
| 期刊: | Plant Journal | 影响因子: | 5.700 |
| 时间: | 2025 | 起止号: | 2025 Mar;121(5):e70035 |
| doi: | 10.1111/tpj.70035 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
