The key viral protein for infection by SARS-CoV-2 is the spike glycoprotein (S protein), mediating entry into host cells, which therefore represents a strong focus for the development of targeted therapeutics. In this work, we explored the fatty acid binding pocket within the S protein, which stabilizes an inactive conformation and disrupts cell recognition and infection. To explore the potential of this site as a drug target, molecular dynamics simulations were performed, followed by a docking-based virtual screening of commercial druglike compounds. This in silico procedure enabled the identification of potential inhibitors of SARS-CoV-2 cell infection, likely by stabilizing an inactive spike conformation, detected in binding assays, although further experiments are required to directly confirm this action. The antiviral effect of the virtual hits was analyzed in cell-based assays, and one molecule displayed a low micromolar activity. Starting from the best antiviral compound found, structural analogues were purchased and evaluated in antiviral assays. An increase in activity was observed for multiple analogues, with the strongest antiviral compound showing submicromolar activity and low cytotoxicity. The successful identification of a new antiviral scaffold through in silico studies might pave the way for the further development of antivirals against SARS-CoV-2 and shows the reliability of the methodologies applied.
In Silico Discovery of a Novel Antiviral Scaffold for SARS-CoVâ2 Targeting the Spike Glycoprotein through the Fatty Acid Binding Pocket.
阅读:9
作者:Queirós-Reis LuÃs, KaarboÌ· Mari, Al-Baldawi Huda, Alvites Rui, MaurÃcio Ana Colette, Brancale Andrea, Bassetto Marcella, Mesquita João R
| 期刊: | ACS Omega | 影响因子: | 4.300 |
| 时间: | 2025 | 起止号: | 2025 Jun 4; 10(23):24117-24132 |
| doi: | 10.1021/acsomega.4c10519 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
