Flexible 3D Kirigami Probes for In Vitro and In Vivo Neural Applications.

阅读:7
作者:Jung Marie, Abu Shihada Jamal, Decke Simon, Koschinski Lina, Graff Peter Severin, Maruri Pazmino Sebastián, Höllig Anke, Koch Henner, Musall Simon, Offenhäusser Andreas, Rincón Montes Viviana
3D microelectrode arrays (MEAs) are gaining popularity as brain-machine interfaces and platforms for studying electrophysiological activity. Interactions with neural tissue depend on the electrochemical, mechanical, and spatial features of the recording platform. While planar or protruding 2D MEAs are limited in their ability to capture neural activity across layers, existing 3D platforms still require advancements in manufacturing scalability, spatial resolution, and tissue integration. In this work, a customizable, scalable, and straightforward approach to fabricate flexible 3D kirigami MEAs containing both surface and penetrating electrodes, designed to interact with the 3D space of neural tissue, is presented. These novel probes feature up to 512 electrodes distributed across 128 shanks in a single flexible device, with shank heights reaching up to 1 mm. The 3D kirigami MEAs are successfully deployed in several neural applications, both in vitro and in vivo, and identified spatially dependent electrophysiological activity patterns. Flexible 3D kirigami MEAs are therefore a powerful tool for large-scale electrical sampling of complex neural tissues while improving tissue integration and offering enhanced capabilities for analyzing neural disorders and disease models where high spatial resolution is required.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。