Different tissues exhibit differential sensitivity to ionizing radiation exposure and display different time courses of pathologies that are not well understood. Ionizing radiation causes hemolysis of red blood cells, causing the release of iron that is taken up by a variety of tissues. The increased iron has been associated with altered expression of iron binding proteins and, in some cases, markers of ferroptosis. Here we examined the time course of iron uptake in murine liver following 60Co total body irradiation (TBI) at 7.9 Gy (LD90/30) and 6.85 Gy (LD0/30). 7.9 Gy induced hydropic degeneration, micro-vesicular steatosis, and inflammatory cell infiltration, whereas at 6.85 Gy the livers displayed only inflammatory cell infiltration. In both cases, iron levels increased significantly, maximal at ~21 days post-TBI. Increased iron was associated with altered expression of ferritin, heme oxygenase, an enzyme required for iron recycling, and the pro-inflammatory cytokine serum amyloid A, maximal ~16-21 days. 7.9 Gy induced liver caspase-3 activation consistent with apoptosis. In contrast, 6.85 Gy induced markers of ferroptosis but not of apoptosis. Our data indicate that iron is deposited in the liver at a delayed time point following radiation and is associated with increased ferritin, HO-1, and inflammatory cytokine production.
Cell death and iron deposition in the liver in two murine models of acute radiation syndrome.
阅读:11
作者:Bradfield Dmitry T, Slaven John E, Rittase W Bradley, Rusnak Milan, Symes Aviva J, Brehm Grace V, Muir Jeannie M, Lee Sang-Ho, Anderson Joseph A, Day Regina M
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 May 29; 20(5):e0324361 |
| doi: | 10.1371/journal.pone.0324361 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
