Evaluation of a field deployable, high-throughput RT-LAMP device as an early warning system for COVID-19 through SARS-CoV-2 measurements in wastewater.

阅读:6
作者:Boza J M, Amirali A, Williams S L, Currall B B, Grills G S, Mason C E, Solo-Gabriele H M, Erickson D C
Quantification of SARS-CoV-2 RNA copies in wastewater can be used to estimate COVID-19 prevalence in communities. While such results are important for mitigating disease spread, SARS-CoV-2 measurements require sophisticated equipment and trained personnel, for which a centralized laboratory is necessary. This significantly impacts the time to result, defeating its purpose as an early warning detection tool. The objective of this study was to evaluate a field portable device (called MINI) for detecting SARS-CoV-2 viral loads in wastewater using real-time reverse transcriptase loop-mediated isothermal amplification (real-time RT-LAMP). The device was tested using wastewater samples collected from buildings (with 430 to 1430 inhabitants) that had known COVID-19-positive cases. Results show comparable performance of RT-LAMP against reverse transcriptase polymerase chain reaction (RT-qPCR) when detecting SARS-CoV-2 copies in wastewater. Both RT-LAMP and RT-qPCR detected SARS-CoV-2 in wastewater from buildings with at least three positive individuals within a 6-day time frame prior to diagnosis. The large 96-well throughput provided by MINI provided scalability to multi-building detection. The portability of the MINI device enabled decentralized on-site detection, significantly reducing the time to result. The overall findings support the use of RT-LAMP within the MINI configuration as an early detection system for COVID-19 infection using wastewater collected at the building scale.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。