Quantification of SARS-CoV-2 RNA copies in wastewater can be used to estimate COVID-19 prevalence in communities. While such results are important for mitigating disease spread, SARS-CoV-2 measurements require sophisticated equipment and trained personnel, for which a centralized laboratory is necessary. This significantly impacts the time to result, defeating its purpose as an early warning detection tool. The objective of this study was to evaluate a field portable device (called MINI) for detecting SARS-CoV-2 viral loads in wastewater using real-time reverse transcriptase loop-mediated isothermal amplification (real-time RT-LAMP). The device was tested using wastewater samples collected from buildings (with 430 to 1430 inhabitants) that had known COVID-19-positive cases. Results show comparable performance of RT-LAMP against reverse transcriptase polymerase chain reaction (RT-qPCR) when detecting SARS-CoV-2 copies in wastewater. Both RT-LAMP and RT-qPCR detected SARS-CoV-2 in wastewater from buildings with at least three positive individuals within a 6-day time frame prior to diagnosis. The large 96-well throughput provided by MINI provided scalability to multi-building detection. The portability of the MINI device enabled decentralized on-site detection, significantly reducing the time to result. The overall findings support the use of RT-LAMP within the MINI configuration as an early detection system for COVID-19 infection using wastewater collected at the building scale.
Evaluation of a field deployable, high-throughput RT-LAMP device as an early warning system for COVID-19 through SARS-CoV-2 measurements in wastewater.
阅读:10
作者:Boza J M, Amirali A, Williams S L, Currall B B, Grills G S, Mason C E, Solo-Gabriele H M, Erickson D C
| 期刊: | Science of the Total Environment | 影响因子: | 8.000 |
| 时间: | 2024 | 起止号: | 2024 Sep 20; 944:173744 |
| doi: | 10.1016/j.scitotenv.2024.173744 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
