Astrocytic RARγ mediates hippocampal astrocytosis and neurogenesis deficits in chronic retinoic acid-induced depression.

阅读:3
作者:Huang Huixian, Lu Wensi, Luo Ran, Zeng Yinyun, Zhang Yuqin, Su Xiaohong, Zhang Xinyi, Tian Bo, Wang Xuemin
Accumulating clinical evidence indicates that chronic exposure to retinoic acid (RA) may lead to depressive symptoms and even increase the risk of suicidal behavior, which severely limits the clinical long-term application of RA. The exact mechanisms through which RA contributes to the onset of depression remain largely unclear. Here, we administered intraperitoneal injections of all-trans RA to male C57BL/6 J mice over a period of 21 days. Mice subjected to chronic RA exposure displayed depressive-like behaviors, accompanied by impaired hippocampal neurogenesis and heightened RA receptor gamma (RARγ) levels in the ventral hippocampus (vHip). The administration of an RARγ antagonist effectively mitigated these RA-induced neurogenesis impairments and depressive-like behaviors. Chronic exposure to RA was also observed to promote hippocampal astrocytosis and increase astrocytic Rarγ expression in the ventral dentate gyrus (vDG) of hippocampus. Notably, astrocytic RARγ in the vDG was found to be a key factor in the observed hippocampal astrocytosis and neurogenesis impairments, and depressive-like behaviors. Chronic exposure to RA resulted in increased extracellular glutamate levels in neural stem cells (NSCs), accompanied by a decrease in glutamate transporter 1 (GLT-1) expression. Enhancing astrocytic GLT-1 expression was found to alleviate both hippocampal astrocytosis and depressive-like behaviors caused by RA. These findings underscore the critical role of astrocytic RARγ-GLT-1 axis in the development of hippocampal astrocytosis, neurogenesis impairments, and depressive symptoms, suggesting that targeting RARγ-GLT-1 could potentially offer an effective therapeutic approach for depression.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。