Desmids are valuable bioindicators in peatland ecosystems due to their sensitivity to environmental changes. In temperate and boreal wetlands, seasonal desiccation of aquatic habitats, which is increasing in frequency and severity due to ongoing climate change, is currently considered a key factor structuring the distribution of individual taxa. In this study, the desiccation tolerance of Micrasterias thomasiana and Staurastrum hirsutum isolated from contrasting hydrological environments in the peatland habitats of the Ore Mountains, Czech Republic, is investigated. Using controlled experimental conditions, we subjected both young, actively growing and old, mature cultures to four different desiccation treatments and evaluated morphology and photosynthetic performance. Our results showed that young and old cultures of both species exhibited a very similar photophysiological response. Severe desiccation led to an irreversible decline in the effective quantum yield of photosystem II in both species, resulting in cell death. Mild drought stress allowed the cultures to recover, indicating that the stress severity determines the recovery potential. Finally, prolonged desiccation resulted in irreversible damage in older cultures of both species, emphasizing the limited desiccation resilience of desmids. We observed similarities in morphology with Zygnema "pre-akinetes," but in contrast to these resilient cells, the old cells of M. thomasiana and S. hirsutum did not survive the harsher desiccation conditions. Long-term mild desiccation revealed a higher resistance of S. hirsutum, probably due to the protective role of its dense mucilage. In nature, these two species usually inhabit localities with low desiccation risk or avoid and mitigate desiccation stress through localized survival strategies.
Desiccation tolerance in peatland desmids: a comparative study of Micrasterias thomasiana and Staurastrum hirsutum (Zygnematophyceae).
阅读:4
作者:Nemcova Y, Neustupa J, Pichrtová M
| 期刊: | Protoplasma | 影响因子: | 2.500 |
| 时间: | 2025 | 起止号: | 2025 Sep;262(5):1215-1228 |
| doi: | 10.1007/s00709-025-02061-1 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
