CDR clipping-induced heterodimerization: identification of a novel dimerization mechanism in a co-formulated antibody cocktail via a multifaceted mass spectrometry approach.

阅读:15
作者:Heindel Andrew J, Shen Yang, Tiambeng Timothy N, Yan Yuetian, Wang Shunhai, Li Ning
Co-formulated antibody cocktails are becoming an increasingly popular therapeutic class; however, they present analytical challenges over traditional single monoclonal antibody (mAb) formulations. One paramount concern is the formation of heteromeric species that have unknown impacts on safety and efficacy. Consequently, effective approaches for identifying and characterizing high-molecular weight (HMW) impurities are critical to the successful development of this therapeutic class. In this study, we used a multifaceted mass spectrometry approach to characterize a unique dimer species formed between two co-formulated mAbs under thermal stress, revealing an intriguing dimerization mechanism that is driven by complementarity-determining region clipping-induced domain swap. Size exclusion chromatography-mass spectrometry, complemented by post-column denaturation, was utilized at both intact and subunit levels to pinpoint the dimerization interface. Additionally, by probing the disulfide bond susceptibility changes via limited reduction and middle-down analysis, the structural changes of the involved domains were studied. These results highlight the critical role of sophisticated analytical methods in comprehending and addressing the complexities linked to co-formulated mAb cocktails.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。