Time-lapse tryptic digestion: a proteomic approach to improve sequence coverage of extracellular matrix proteins.

阅读:5
作者:Lee Fred, Shao Xinhao, Considine James M, Gao Yu Tom, Naba Alexandra
The extracellular matrix (ECM) is a complex and dynamic meshwork of proteins providing structural support to cells. It also provides biochemical signals governing cellular processes, including proliferation, adhesion, and migration. Alterations of ECM structure and/or composition have been linked to many pathological processes, including cancer and fibrosis. Over the past decade, mass-spectrometry-based proteomics has become the state-of-the-art method to profile the protein composition of ECMs. However, existing methods do not fully capture the broad dynamic range of protein abundances in the ECM. They also do not permit to achieve the high coverage needed to gain finer biochemical on ECM proteoforms (e.g., isoforms, post-translational modifications) and topographical information critical to better understand ECM protein functions. Here, we present the development of a time-lapsed proteomic pipeline using limited tryptic proteolysis and sequential release of peptides over time. This experimental pipeline was combined with data-independent acquisition mass spectrometry and the assembly of a custom matrisome spectral library to enhance peptide-to-spectrum matching. This pipeline shows superior protein identification, peptide-to-spectrum matching, and significantly increased sequence coverage against standard ECM proteomic pipelines. Exploiting the spatio-temporal resolution of this method, we further demonstrate how time-resolved 3-dimensional peptide mapping can identify protein regions differentially susceptible to trypsin, which may aid in identifying protein-protein interaction sites.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。