Clostridioides difficile toxins alter host metabolic pathway and bile acid homeostasis gene expression in colonic epithelium.

阅读:17
作者:Thomas Stephanie A, Pike Colleen M, Perkins Cypress E, Brown Sean T, Espinoza Jaen Xochilt M, McMillan Arthur S, Theriot Casey M
A major risk factor for acquiring Clostridioides difficile is antibiotic usage that disrupts a healthy microbial gut community, facilitating the establishment of infection. Once established, C. difficile secretes exotoxins (TcdA and TcdB) that are internalized into host colonic epithelial cells where they disrupt gut barrier function and induce hyperinflammation resulting in severe diarrhea and possibly leading to death. We employed three different platforms to explore gene expression of cells in the gut when exposed to C. difficile or its toxins, TcdA and TcdB. An antibiotic-treated mouse model of Clostridioides difficile infection (CDI) was used to identify differential gene expression with a NanoString Technologies mouse inflammatory gene panel consisting of 770 genes, including a subset of bile acid (BA) homeostasis and nuclear receptor genes. In the cecal tissue of mice with CDI, reduced expression was observed for genes involved in peroxisome proliferator-activated receptor (PPAR) signaling and cholesterol and glucose metabolism, while a significant increase in expression was observed for IL-17 related inflammatory genes. Similarly, Caco-2 cell culture and primary human colonic epithelial cells (hCE) exposed to toxins for 24 h showed altered expression in several PPAR-regulated and cholesterol metabolic genes similar to those found in mice. These cell culture experiments also revealed significant alterations in gene expression of the Farnesoid X receptor BA regulatory pathway. Together, these data suggest that exposure to C. difficile and its toxins may alter host cholesterol metabolic processes, including BA transport and synthesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。