Systemic Identification of Functionally Conserved Long Noncoding RNA Metabolic Regulators in Human and Mouse Livers.

阅读:5
作者:Jiang Chengfei, Li Zhe, Seok Sunmi, Li Ping, Ma Yonghe, Podguski Stephanie K, Moturi Shria, Yoneda Nao, Kawai Kenji, Uehara Shotaro, Ohnishi Yasuyuki, Suemizu Hiroshi, Zhang Jinwei, Cao Haiming
BACKGROUND & AIMS: Unlike protein-coding genes, most human long noncoding RNAs (lncRNAs) lack conservation based on their sequences, posing a challenge for investigating their role in a pathophysiological context for clinical translation. This study explores the hypothesis that nonconserved lncRNAs in human and mouse livers may share similar metabolic functions, giving rise to functionally conserved lncRNA metabolic regulators (fcLMRs). METHODS: We developed a sequence-independent strategy to select putative fcLMRs and performed extensive analysis to determine the functional similarities of putative human and mouse (h/m)LMR pairs. RESULTS: We found that several pairs of putative fcLMRs share similar functions in regulating gene expression. We further demonstrated that a pair of fcLMRs, h/mLMR1, robustly regulated triglyceride levels by modulating the expression of a similar set of lipogenic genes. Mechanistically, h/mLMR1 binds to poly(A)-binding protein cytoplasmic 1 (PABPC1), a regulator of protein translation, via short motifs on either lncRNA with divergent sequences but similar structures. This interaction inhibits protein translation, activating an amino acid- mechanistic target of rapamycin (mTOR)-sterol regulatory element-binding transcription factor 1 (SREBP1) axis to regulate lipogenic gene expression. Intriguingly, PABPC1-binding motifs on each lncRNA fully rescued the functions of their corresponding LMRs in the opposite species. Given the elevated expression of h/mLMR1 in humans and mice with hepatic steatosis, the PABPC1-binding motif on hLMR1 emerges as a potential nonconserved human drug target whose functions can be fully validated in a physiologically relevant setting before clinical studies. CONCLUSIONS: Our study supports that fcLMRs represent a novel and prevalent biological phenomenon and that deep phenotyping of genetic mLMR mouse models constitutes a powerful approach to understand the pathophysiological role of lncRNAs in the human liver.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。