DNA methylation microarrays have become a widely used tool for investigating epigenetic modifications in various aspects of biomedical research. However, technical variability in methylation data poses challenges for downstream applications such as predictive modeling of health and disease. In this study, we measure the impact of common sources of technical variability in Illumina DNA methylation microarray data, with a specific focus on positional biases inherent within the microarray technology. By utilizing a dataset comprised of multiple, highly similar technical replicates, we identified a chamber number bias, with different chambers of the microarray exhibiting systematic differences in fluorescence intensities (FI) and their derived methylation beta values, which are only partially corrected for by existing preprocessing methods and demonstrate that this positional bias can lead to false positive results during differential methylation testing. Additionally, our investigation identified outliers in low-level fluorescence data which might play a role in contributing to predictive error in computational models of health-relevant traits such as age.
Measuring technical variability in illumina DNA methylation microarrays.
阅读:2
作者:Butler Anderson A, Kras Jason J, Chwalek Karolina P, Ramos Enrique I, Bishof Isaac J, Vogel David S, Vera Daniel L
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Jul 11; 20(7):e0326337 |
| doi: | 10.1371/journal.pone.0326337 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
