Elimination of olfactory sensory neurons by zinc sulfate inoculation prevents SARS-CoV-2 infection of the brain in K18-hACE2 transgenic mice.

阅读:4
作者:Lee Ji-Hun, Yoo Eun-Seon, Kim Na-Won, Shim Won-Yong, Jeong Han-Bi, Kim Dong-Hyun, Park Young-Jun, Seo Sun-Min, Yun Jun-Won, Park Jun Won, Choi Kang-Seuk, Lee Ho-Young, Seo Jun-Young, Nam Ki Taek, Seong Je Kyung, Choi Yang-Kyu
Coronavirus disease-2019 (COVID-19), attributed to the severe acute respiratory syndrome-related coronavirus-2 (SARS-CoV-2), has posed global health challenges since it first emerged in 2019, and its impact continues to persist. The neurotropic nature of SARS-CoV-2 remains undisclosed, though researchers are proposing hypotheses on how the virus is transmitted to the central nervous system. One of the prevailing hypotheses is that SARS-CoV-2 travels through the olfactory nerve system via the olfactory epithelium (OE). Using a K18-human angiotensin converting-enzyme 2 (hACE2) transgenic mouse model with impaired olfactory sensory neurons (OSNs) induced by zinc sulfate, we examined the role of the olfactory nerve in the brain invasion by SARS-CoV-2. Mice lacking OSNs exhibited reduced levels of viral transmission to the brain, leading to significantly improved outcomes following SARS-CoV-2 infection. Moreover, a positive correlation was observed between viral persistence in the OE and brain infection. These results indicate that early inhibition of the olfactory nerve pathway effectively prevents viral invasion of the brain in K18-hACE2 mice. Our study underscores the significance of the olfactory nerve pathway in the transmission of SARS-CoV-2 to the brain.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。