Whole-brain mapping of basal forebrain cholinergic neurons reveals a long-range reciprocal input-output loop between distinct subtypes.

阅读:3
作者:Chen Zhaonan, Liu Yanmei, Yang Yunqi, Wang Lizhao, Qin Meiling, Jiang Zhishan, Xu Min, Zhang Siyu
Basal forebrain cholinergic neurons (BFCNs) influence cognition and emotion through specific acetylcholine release in various brain regions, including the prefrontal cortices and basolateral amygdala (BLA). Acetylcholine release is controlled by distinct BFCN subtypes, modulated by excitatory and inhibitory inputs. However, the organization of the whole-brain input-output networks of these subtypes remains unclear. Here, we identified two distinct BFCN subtypes-BFCN(→ACA) and BFCN(→BLA)-innervating the anterior cingulate cortex (ACA) and BLA, each with unique distributions, electrophysiological properties, and projection patterns. Combining rabies-virus-assisted mapping and triple-plex RNAscope hybridization, we characterized their whole-brain input networks, identifying unique excitatory and shared inhibitory inputs for these subtypes. Moreover, our results reveal a long-range reciprocal input-output loop: BFCN(→ACA) neurons target the isocortex, their shared excitatory-input source, whereas BFCN(→BLA) neurons target shared inhibitory-input sources such as the striatum and pallidum, thus enabling dynamic interactions among these BFCN subtypes. Our study deepens understanding of cholinergic modulation in cognition and emotion and provides insights into their functional interactions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。