Fast reconstruction and optical-sectioning three-dimensional structured illumination microscopy.

阅读:8
作者:Cao Ruijie, Li Yaning, Wang Wenyi, Fu Yunzhe, Bu Xiaoyu, Saimi Dilizhatai, Sun Jing, Ge Xichuan, Jiang Shan, Pei Yuru, Gao Baoxiang, Chen Zhixing, Li Meiqi, Xi Peng
Three-dimensional structured illumination microscopy (3DSIM) is a popular method for observing subcellular/cellular structures or animal/plant tissues with gentle phototoxicity and 3D super-resolution. However, its time-consuming reconstruction process poses challenges for high-throughput imaging and real-time observation. Moreover, traditional 3DSIM typically requires more than six z layers for successful reconstruction and is susceptible to defocused backgrounds. This poses a great gap between single-layer 2DSIM and 6-layer 3DSIM, and limits the observation of thicker samples. To address these limitations, we developed FO-3DSIM, a novel method that integrates spatial-domain reconstruction with optical-sectioning SIM. FO-3DSIM enhances reconstruction speed by up to 855.7 times with superior performance with limited z layers and under high defocused backgrounds. It retains the high-fidelity, low-photon reconstruction capabilities of our previously proposed Open-3DSIM. Utilizing fast reconstruction and optical sectioning, we achieved large field-of-view (FOV) 3D super-resolution imaging of mouse kidney actin, covering a region of 0.453 mm × 0.453 mm × 2.75 μm within 23 min of acquisition and 13 min of reconstruction. Near real-time performance was demonstrated in live actin imaging with FO-3DSIM. Our approach reduces photodamage through limited z layer reconstruction, allowing the observation of ER tubes with just three layers. We anticipate that FO-3DSIM will pave the way for near real-time, large FOV 6D imaging, encompassing xyz super-resolution, multi-color, long-term, and polarization imaging with less photodamage, removed defocused backgrounds, and reduced reconstruction time.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。