Effects of dim light at night in C57BL/6 J mice on recovery after spinal cord injury.

阅读:4
作者:Aldrich John C, Scheinfeld Ashley R, Lee Sydney E, Dusenbery Kalina J, Mahach Kathryn M, Van de Veire Brigid C, Fonken Laura K, Gaudet Andrew D
Spinal cord injury (SCI) can cause long-lasting locomotor deficits, pain, and mood disorders. Anatomical and functional outcomes are exacerbated by inflammation after SCI, which causes secondary damage. One promising target after SCI is manipulating the circadian system, which optimizes biology and behavior for time of day - including neuroimmune responses and mood-related behaviors. Circadian disruption after SCI is likely worsened by a disruptive hospital environment, which typically includes dim light-at-night (dLAN). Here, we hypothesized that mice subjected to SCI, then placed in dLAN, would exhibit worsened locomotor deficits, pain-like behavior, and anxiety-depressive-like symptoms compared to mice maintained in light days with dark nights (LD). C57BL/6 J mice received sham surgery or moderate T9 contusion SCI, then were placed permanently in LD or dLAN. dLAN after SCI did not worsen locomotor deficits; rather, SCI-dLAN mice showed slight improvement in open-field locomotion at the final timepoint. Although dLAN did not alter SCI-induced heat hyperalgesia, SCI-dLAN mice exhibited an increase in mechanical allodynia at 13 days post-SCI compared to SCI-LD mice. SCI-LD and SCI-dLAN mice had similar outcomes using sucrose preference (depressive-like) and open-field (anxiety-like) tests. At 21 dpo, SCI-dLAN mice had reduced preference for a novel juvenile compared to SCI-LD, implying that dLAN combined with SCI may worsen this mood-related behavior. Finally, lesion size was similar between SCI-LD and SCI-dLAN mice. Therefore, newly placing C57BL/6 J mice in dLAN after SCI had modest effects on locomotor, pain-like, and mood-related behaviors. Future studies should consider whether clinically-relevant circadian disruptors, alone or in combination, could be ameliorated to enhance outcomes after SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。