Mammalian TMC1 or 2 are necessary for scramblase activity in auditory hair cells.

阅读:15
作者:Peineau Thibault, Marcovich Irina, Rodriguez Cristobal von Muhlenbrock, O'Malley Sydney, Cui Runjia, Ballesteros Angela, Holt Jeffrey R
Sensory transduction in auditory hair cells gates mechanosensitive ion channels, converting sound information into electrical signals (Zheng and Holt, 2021). Previously, we found that Transmembrane channel (TMC) proteins 1 and 2 form the pore of hair cell transduction channels (Pan et al., 2013; 2018). The structure of C. elegans TMC proteins (Jeong et al., 2022; Clark et al., 2024) and predicted mammalian TMC structures (Hahn et al., 2009; Ballesteros et al., 2018; Pan et al., 2018) are reminiscent of TMEM16 proteins, which function as Ca(2+)-activated ion channels and lipid scramblases. Here, we investigated lipid scramblase activity in live auditory hair cells with pharmacologic or genetic disruption of TMC1, extending work reported by Ballesteros and Swartz (2022). We used annexin-V to label phosphatidylserine (PS) localized in the outer leaflet of hair cell stereocilia membranes. PS externalization was triggered by disruption of sensory transduction using the blocker, benzamil, or by genetic mutations that affect TMC1 permeation properties. We found that expression of either TMC1 or TMC2, was essential for PS externalization. Tmc1/Tmc2 knockout mice and Tmie mutant mice lacked PS externalization completely. We also determined that expression of exogenous human TMCs (hTMC1 or hTMC2) in Tmc1/Tmc2 knockout mice induced PS externalization. Lastly, we demonstrated that expression of a dominant mutation in Tmc1 evoked constitutive PS externalization, while a recessive mutation eliminated PS externalization. Our data suggest that disruption of sensory transduction may lead to dysregulation of membrane homeostasis in hair cells and thus may contribute to auditory dysfunction in mice and humans.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。