Mammalian TMC1 or 2 are necessary for scramblase activity in auditory hair cells.

阅读:4
作者:Peineau Thibault, Marcovich Irina, Rodriguez Cristobal von Muhlenbrock, O'Malley Sydney, Cui Runjia, Ballesteros Angela, Holt Jeffrey R
Sensory transduction in auditory hair cells gates mechanosensitive ion channels, converting sound information into electrical signals (Zheng and Holt, 2021). Previously, we found that Transmembrane channel (TMC) proteins 1 and 2 form the pore of hair cell transduction channels (Pan et al., 2013; 2018). The structure of C. elegans TMC proteins (Jeong et al., 2022; Clark et al., 2024) and predicted mammalian TMC structures (Hahn et al., 2009; Ballesteros et al., 2018; Pan et al., 2018) are reminiscent of TMEM16 proteins, which function as Ca(2+)-activated ion channels and lipid scramblases. Here, we investigated lipid scramblase activity in live auditory hair cells with pharmacologic or genetic disruption of TMC1, extending work reported by Ballesteros and Swartz (2022). We used annexin-V to label phosphatidylserine (PS) localized in the outer leaflet of hair cell stereocilia membranes. PS externalization was triggered by disruption of sensory transduction using the blocker, benzamil, or by genetic mutations that affect TMC1 permeation properties. We found that expression of either TMC1 or TMC2, was essential for PS externalization. Tmc1/Tmc2 knockout mice and Tmie mutant mice lacked PS externalization completely. We also determined that expression of exogenous human TMCs (hTMC1 or hTMC2) in Tmc1/Tmc2 knockout mice induced PS externalization. Lastly, we demonstrated that expression of a dominant mutation in Tmc1 evoked constitutive PS externalization, while a recessive mutation eliminated PS externalization. Our data suggest that disruption of sensory transduction may lead to dysregulation of membrane homeostasis in hair cells and thus may contribute to auditory dysfunction in mice and humans.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。