Polyphenol-Derived Carbonaceous Frameworks with Multiscale Porosity for High-Power Electrochemical Applications.

阅读:7
作者:Kim Minjun, Jang Joon Ho, Nam Myeong Gyun, Yoo Pil J
With the escalating global demand for electric vehicles and sustainable energy solutions, increasing focus is placed on developing electrochemical systems that offer fast charging and high-power output, primarily governed by mass transport. Accordingly, porous carbons have emerged as highly promising electrochemically active or supporting materials due to expansive surface areas, tunable pore structures, and superior electrical conductivity, accelerating surface reaction. Yet, while substantial research has been devoted to crafting various porous carbons to increase specific surface areas, the optimal utilization of the surfaces remains underexplored. This review emphasizes the critical role of the fluid dynamics within multiscale porous carbonaceous electrodes, leading to substantially enhanced pore utilization in electrochemical systems. It elaborates on strategies of using sacrificial templates for incorporating meso/macropores into microporous carbon matrix, while exploiting the unique properties of polyphenol moieties such as sustainable carbons derived from biomass, inherent adhesive/cohesive interactions with template materials, and facile complexation capabilities with diverse materials, thereby enabling adaptive structural modulations. Furthermore, it explores how multiscale pore configurations influence pore-utilization efficiency, demonstrating advantages of incorporating multiscale pores. Finally, synergistic impact on the high-power electrochemical systems is examined, attributed to improved fluid-dynamic behavior within the carbonaceous frameworks, providing insights for advancing next-generation high-power electrochemical applications.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。