Cell states are influenced by the regulation of gene expression orchestrated by transcription factors capable of binding to accessible DNA regions. To uncover if sex differences exist in chromatin accessibility in the human dorsal root ganglion (hDRG), where nociceptive neurons innervating the body are found, we performed bulk and spatial assays for transposase-accessible chromatin technology followed by sequencing (ATAC-seq) from organ donors without a history of chronic pain. Using bulk ATAC-seq, we detected abundant sex differences in the hDRG. In women, differentially accessible regions (DARs) mapped mostly to the X chromosome, whereas in men, they mapped to autosomal genes. Hormone-responsive transcription factor binding motifs such as EGR1/3 were abundant within DARs in women, while JUN, FOS, and other activating protein 1 factor motifs were enriched in men, suggesting a higher activation state of cells compared with women. These observations were consistent with spatial ATAC-seq data. Furthermore, we validated that EGR1 expression is biased to female hDRG using RNAscope. In neurons, spatial ATAC-seq revealed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in women and in Ca2+-signaling-related genes in men. Strikingly, XIST, responsible for inactivating 1 X chromosome by compacting it and maintaining at the periphery of the nucleus, was found to be highly dispersed in female neuronal nuclei. This is likely related to the higher chromatin accessibility in X in female hDRG neurons observed using both ATAC-seq approaches. We have documented baseline epigenomic sex differences in the hDRG which provide important descriptive information to test future hypotheses.
Epigenomic landscape of the human dorsal root ganglion: sex differences and transcriptional regulation of nociceptive genes.
阅读:6
作者:Franco-Enzástiga Ãrzula, Inturi Nikhil N, Natarajan Keerthana, Mwirigi Juliet M, Mazhar Khadijah, Schlachetzki Johannes C M, Schumacher Mark, Price Theodore J
| 期刊: | Pain | 影响因子: | 5.500 |
| 时间: | 2025 | 起止号: | 2025 Mar 1; 166(3):614-630 |
| doi: | 10.1097/j.pain.0000000000003508 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
