An evolutionary perspective on the relationship between kinetochore size and CENP-E dependence for chromosome alignment.

阅读:5
作者:Almeida Ana C, Rocha Helder, Raas Maximilian W D, Witte Hanh, Sommer Ralf J, Snel Berend, Kops Geert J P L, Gassmann Reto, Maiato Helder
Chromosome alignment during mitosis can occur as a consequence of bi-orientation or is assisted by the CENP-E (kinesin-7) motor at kinetochores. We previously found that Indian muntjac chromosomes with larger kinetochores bi-orient more efficiently and are biased to align in a CENP-E-independent manner, suggesting that CENP-E dependence for chromosome alignment negatively correlates with kinetochore size. Here, we used targeted phylogenetic profiling of CENP-E in monocentric (localized centromeres) and holocentric (centromeres spanning the entire chromosome length) clades to test this hypothesis at an evolutionary scale. We found that, despite being present in common ancestors, CENP-E was lost more frequently in taxa with holocentric chromosomes, such as Hemiptera and Nematoda. Functional experiments in two nematodes with holocentric chromosomes in which a CENP-E ortholog is absent (Caenorhabditis elegans) or present (Pristionchus pacificus) revealed that targeted expression of human CENP-E to C. elegans kinetochores partially rescued chromosome alignment defects associated with attenuated polar-ejection forces, whereas CENP-E inactivation in P. pacificus had no detrimental effects on mitosis and viability. These data showcase the dispensability of CENP-E for mitotic chromosome alignment in species with larger kinetochores.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。