Inhibition of Rho-kinase by fasudil contributes to the modulation of the synaptic plasticity response in the rat hippocampus.

阅读:4
作者:Babur Ercan, Saray Hatice, Süer Cem, Dursun Nurcan
Metaplasticity refers to an activity-dependent change in the physiological or biochemical state of neurons that changes their ability to generate subsequently induced synaptic plasticity, such as long-term potentiation (LTP) or long-term depression (LTD). Rho-kinases (ROCK) are known to be important for stable changes in synaptic strength, especially LTP. In this study, we investigated whether LTP inhibition in synapses primed with 1-Hz stimulation was affected by ROCK inhibition in young adult male rats. The study also examined the pattern of tau phosphorylation that occurs during metaplastic regulation, applying into perspective the phosphorylation of tau protein by ROCK. Field potentials consisting of an excitatory postsynaptic potential (fEPSP) and population spike (PS) were recorded from the granule cell layer of the hippocampal dentate gyrus (DG). Metaplastic LTP was induced by strong tetanic stimulation (HFS) of the lateral perforant path after a low-frequency stimulation (LFS) protocol. A glass micropipette was inserted into the granule cell layer of the ipsilateral dentate gyrus to record fEPSP and drug infusion. Drug infusion (saline, n = 8; fasudil, n = 8, 10 µM) was started after the 15-min baseline recording and lasted for 60 min. Total and phosphorylated tau levels were measured in the stimulated hippocampus, which was immediately removed after the electrophysiological recording. LFS prevented the induction of LTP in response to HFS and even produced synaptic LTD in the saline-infused group (83.8 ± 2.6% of the baseline), but moderate potentiation of fEPSP (121.1 ± 7.7% of the baseline) occurred at the end of recording in the experiments where fasudil infusion was performed. LFS caused a comparable early depression, and HFS resulted in a comparable potentiation of the PS amplitude in both groups. Granular cells of the DG failed to exhibit synaptic LTP inhibition in the presence of fasudil, and levels of total and phosphorylated GSK-3β and levels of phosphorylated tau (Ser(396) and Ser(202)-Thr(205)) were found to be lower than those of the control group. Based on these findings, it can be concluded that pharmacological inhibition of ROCK results in impaired ability of dentate gyrus neurons to inhibit synaptic LTP, and this result is accompanied by decreased phosphorylation of GSK-3β and tau proteins. The negative effect of fasudil on neuronal function should not be neglected when evaluating its effects as a therapeutic agent for diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。