Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogeneous, and systemic disease defined by a suite of symptoms, including unexplained persistent fatigue, post-exertional malaise (PEM), cognitive impairment, myalgia, orthostatic intolerance, and unrefreshing sleep. The disease mechanism of ME/CFS is unknown, with no effective curative treatments. In this study, we present a multi-site ME/CFS whole-genome analysis, which is powered by a novel deep learning framework, HEAL2. We show that HEAL2 not only has predictive value for ME/CFS based on personal rare variants, but also links genetic risk to various ME/CFS-associated symptoms. Model interpretation of HEAL2 identifies 115 ME/CFS-risk genes that exhibit significant intolerance to loss-of-function (LoF) mutations. Transcriptome and network analyses highlight the functional importance of these genes across a wide range of tissues and cell types, including the central nervous system (CNS) and immune cells. Patient-derived multi-omics data implicate reduced expression of ME/CFS risk genes within ME/CFS patients, including in the plasma proteome, and the transcriptomes of B and T cells, especially cytotoxic CD4 T cells, supporting their disease relevance. Pan-phenotype analysis of ME/CFS genes further reveals the genetic correlation between ME/CFS and other complex diseases and traits, including depression and long COVID-19. Overall, HEAL2 provides a candidate genetic-based diagnostic tool for ME/CFS, and our findings contribute to a comprehensive understanding of the genetic, molecular, and cellular basis of ME/CFS, yielding novel insights into therapeutic targets. Our deep learning model also offers a potent, broadly applicable framework for parallel rare variant analysis and genetic prediction for other complex diseases and traits.
Dissecting the genetic complexity of myalgic encephalomyelitis/chronic fatigue syndrome via deep learning-powered genome analysis.
阅读:15
作者:Zhang Sai, Jahanbani Fereshteh, Chander Varuna, Kjellberg Martin, Liu Menghui, Glass Katherine A, Iu David S, Ahmed Faraz, Li Han, Maynard Rajan Douglas, Chou Tristan, Cooper-Knock Johnathan, Zhang Martin Jinye, Thota Durga, Zeineh Michael, Grenier Jennifer K, Grimson Andrew, Hanson Maureen R, Snyder Michael P
| 期刊: | medRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 May 11 |
| doi: | 10.1101/2025.04.15.25325899 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
