BACKGROUND: Acute myocardial infarction (AMI) is a critical cardiovascular event characterized by sudden coronary blood flow interruption, leading to myocardial ischemia and necrosis. Despite advances in acute therapeutic measures, understanding the metabolic damage related to AMI, particularly through specific protein expressions, remains limited. This study utilized Olink cardiovascular metabolomics technology to explore cardiovascular metabolism-related protein biomarkers associated with AMI, aiming to address the clinical need for early diagnosis and targeted therapy. METHODS: This study utilized Olink cardiovascular metabolomics technology to analyze 92 cardiovascular metabolism-related proteins in coronary blood samples from 20 AMI patients and 10Â healthy controls. Differentially expressed proteins were identified using statistical t-tests, followed by functional enrichment analysis (GO and KEGG) and protein-protein interaction network construction. Five core proteins were validated in plasma samples from an additional 125 AMI patients and 120Â healthy controls via enzyme-linked immunosorbent assay. To evaluate diagnostic performance, receiver operating characteristic curves were generated using GEO-related datasets, and Mendelian randomization analysis was employed to investigate the causal relationship between core proteins and AMI risk. RESULTS: The study identified 32 proteins with significantly altered expression levels between AMI patients and healthy controls. Among these, five core proteins-PCOLCE, FCN2, REG1A, DEFA1, and CRTAC1-were significantly associated with key biological processes such as metabolism, collagen formation, and the PI3K/AKT signaling pathway. These proteins showed strong correlations with clinical indicators, including BMI, LVEF, NT-proBNP, CK-MB, and cTnT. FCN2 and DEFA1 were further validated as having a causal relationship with AMI risk, indicating their potential as diagnostic biomarkers. CONCLUSION: The identified core proteins PCOLCE, FCN2, REG1A, DEFA1, and CRTAC1 are potential biomarkers for the early diagnosis and risk assessment of AMI. These findings suggest that these proteins could serve as targets for future therapeutic interventions aimed at mitigating cardiovascular metabolic damage in AMI.
Identification of Cardiometabolic Protein Biomarkers for Acute Myocardial Infarction Using Olink Proteomics.
阅读:17
作者:Tan Xin, Wang Xiangyu, Xu Shuai, Zeng Yiyao, Zhang Ge, Xu Anchen, Jiang Yufeng, Jiang Hezi, Song Yahui, Fan Jili, Fu Yangjun, Bo Xiaohong, Fan Huimin, Zhou Yafeng
| 期刊: | Journal of Inflammation Research | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 Feb 22; 18:2629-2646 |
| doi: | 10.2147/JIR.S495784 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
