Procyanidins and Anthocyanins in Young and Aged Prokupac Wines: Evaluation of Their Reactivity Toward Salivary Proteins.

阅读:19
作者:Delić Katarina, Milinčić Danijel D, Petrović Aleksandar V, Stanojević Slađana P, Gancel Anne-Laure, Jourdes Michael, PeÅ¡ić Mirjana B, Teissedre Pierre-Louis
In this study, the reactivity of procyanidins and anthocyanins in young and aged Prokupac wines toward salivary proteins is investigated via SDS-PAGE and UHPLC-QTOF-MS to determine the differences between the phenolic compounds of red wine in relation to the aging process of wine. SDS-PAGE analysis revealed that procyanidins, flavanol-anthocyanin polymers, and ellagitannins in aged wine have strong affinities for salivary proteins, leading to the formation of insoluble complexes. By contrast, young wine contained predominantly procyanidins with high salivary protein affinity, as well as monomeric flavan-3-ols and anthocyanins, which mainly form soluble aggregates, while polymeric phenolics were less represented. Electrophoretic patterns further showed that seed-derived procyanidins mainly formed insoluble complexes with salivary proteins, whereas skin-derived anthocyanins tended to form soluble ones. The total content of all phenolic compounds quantified by UHPLC-QTOF-MS was 2.5 times higher in young wine than in aged wine, primarily due to the significantly greater abundance of malvidine-3-O-glucoside in young wine (eightfold higher level in young wine). Targeted UHPLC-QTOF-MS analysis of selected phenolics confirmed the electrophoretic results and showed a higher binding affinity of procyanidins in aged wine compared to young wine, as well as a higher percentage of procyanidin binding compared to anthocyanins, independent of the age of the wine. Sensory evaluation showed that aged wine had higher tannin quality scores, whereas young wine exhibited greater acidity and astringency, with bitterness being comparable between them. These results highlight the influence of wine aging on the interaction between phenolic compounds and salivary proteins and emphasize the dominant role of procyanidins in protein binding and the potential synergistic contribution of anthocyanins to mouthfeel perception.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。