Base editors enable the direct conversion of target nucleotides without introducing DNA double strand breaks, making them a powerful tool for creating point mutations in a human genome. However, current Cas9-derived base editing technologies have limited ability to simultaneously edit multiple loci with base-pair level precision, hindering the generation of polygenic phenotypes. Here, we test the ability of six Cas12a-derived base editing systems to process multiple gRNAs from a single transcript. We identify base editor variants capable of multiplexed base editing and improve the design of the respective gRNA array expression cassette, enabling multiplexed editing of 15 target sites in multiple human cell lines, increasing state-of-the-art in multiplexing by three-fold in the field of mammalian genome engineering. To reduce bystander mutations, we also develop a Cas12a gRNA engineering approach that directs editing outcomes towards a single base-pair conversion. We combine these advances to demonstrate that both strategies can be combined to drive multiplex base editing with greater precision and reduced bystander mutation rates. Overcoming these key obstacles of mammalian genome engineering technologies will be critical for their use in studying single nucleotide variant-associated diseases and engineering synthetic mammalian genomes.
Precision multiplexed base editing in human cells using Cas12a-derived base editors.
阅读:8
作者:Schweitzer Anabel Y, Adams Etowah W, Nguyen Michael T A, Lek Monkol, Isaacs Farren J
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 May 31; 16(1):5061 |
| doi: | 10.1038/s41467-025-59653-x | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
