The application of CRISPR-Cas systems to genome editing has revolutionized experimental biology and is an emerging gene and cell therapy modality. CRISPR-Cas systems target off-target regions within the human genome, which is a challenge that must be addressed. Phages have evolved anti-CRISPR proteins (Acrs) to evade CRISPR-Cas-based immunity. Here, we engineer an Acr (AcrIIA4) to increase the precision of CRISPR-Cas-based genome targeting. We developed an approach that leveraged (1) computational guidance, (2) deep mutational scanning, and (3) highly parallel DNA repair measurements within human cells. In a single experiment, â¼10,000 Acr variants were tested. Variants that improved editing precision were tested in additional validation experiments that revealed robust enhancement of gene editing precision and synergy with a high-fidelity version of Cas9. This scalable high-throughput screening framework is a promising methodology to engineer Acrs to increase gene editing precision, which could be used to improve the safety of gene editing-based therapeutics.
Computationally guided high-throughput engineering of an anti-CRISPR protein for precise genome editing in human cells.
阅读:4
作者:Marsiglia Julia, Vaalavirta Kia, Knight Estefany, Nakamura Muneaki, Cong Le, Hughes Nicholas W
| 期刊: | Cell Reports Methods | 影响因子: | 4.500 |
| 时间: | 2024 | 起止号: | 2024 Oct 21; 4(10):100882 |
| doi: | 10.1016/j.crmeth.2024.100882 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
