Changes of structural, magnetic and spectroscopic properties of microencapsulated iron sucrose nanoparticles in saline.

阅读:11
作者:Lewińska Sabina, Aleshkevych Pavlo, Minikayev Roman, Bajorek Anna, Dulski Mateusz, Prusik Krystian, Wojciechowski Tomasz, Ślawska-Waniewska Anna
The structural and physical properties of microencapsulated iron sucrose and their changes upon dissolution in saline were tested. For the undissolved sample, calcium alginate microcapsules with irregular shapes were registered via scanning electron microscopy, inside which core-shell nanoparticles were identified by transmission electron microscopy micrographs. Magnetic studies (DC and AC) performed on the undissolved sample revealed the presence of a low temperature blocking process ( ≈ 10 K), and confirmed its superparamagnetic state between 70- 250 K. X-ray photoelectron spectroscopy and Raman studies showed a varied composition of the undissolved sample in which organic compounds and SiO(2) are the major phases, while the iron phase was recognized as iron oxyhydroxide (FeOOH) (most probably the α polymorph). The dissolution procedure had significant influence on structural and physical properties of the investigated compound, such as lowering of the blocking temperature with the dissolution time. Electron paramagnetic resonance (EPR) studies performed on the completely dissolved sample revealed that some of the Fe(3+) ions became paramagnetic, while the rest remained exchange coupled into clusters. The nonintentional manganese contamination was determined using EPR in the completely dissolved sample.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。