Zirconium ferrite nanoparticles as smart materials for energy and environmental applications: fractional-order supercapacitors, reservoirs of F(-) ions, and efficient electrocatalysts for water splitting.

阅读:6
作者:Sahoo Amit, Acharya Achyuta N, Jena Priyambada, Moonis M, Biswal J P, Swain S, Tripathy M C
A novel electrocatalyst, zirconium ferrite nanoparticles (NPs) (ZrFe(2)O(5) NPs), was synthesized through coprecipitation and calcination processes at 300 °C and 500 °C using iron rust. The ZrFe(2)O(5) NPs were used as catalysts for the hydrogen evolution reaction. Furthermore, these NPs in an alkaline medium exhibited superior properties of a fractional order supercapacitor, based on which a prototype device was fabricated to demonstrate its energy storage applications. The capacitance and phase graphs of the fractional-order supercapacitor exhibit a peak value of 1.5 F s(-1-α) in the mid-frequency range, followed by a decrease at increased frequencies. Furthermore, these NPs were found to be the most effective agents for removing fluoride ions. In a modified one-pot synthetic approach, the hydrogel (Hy) was synthesized using PVA and glycerine in an aqueous medium at 100 °C. The composite Hy membranes were prepared by mixing Hy with these NPs, which were applied to remove fluoride ions efficiently within the pH range of 1-10 from the aqueous medium through adsorption, yielding defluorinated water. The adsorption process of fluoride ions was correlated with the Freundlich and Langmuir isotherms, with pseudo-second-order kinetics as the preferred approach. The zirconium ferrite NPs and the composite Hy membranes were characterized through various characterization techniques, i.e., XRD, XPS, FTIR, solid UV-visible spectroscopy, STA, FESEM, HRTEM, and BET surface area analysis.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。