A novel electrocatalyst, zirconium ferrite nanoparticles (NPs) (ZrFe(2)O(5) NPs), was synthesized through coprecipitation and calcination processes at 300 °C and 500 °C using iron rust. The ZrFe(2)O(5) NPs were used as catalysts for the hydrogen evolution reaction. Furthermore, these NPs in an alkaline medium exhibited superior properties of a fractional order supercapacitor, based on which a prototype device was fabricated to demonstrate its energy storage applications. The capacitance and phase graphs of the fractional-order supercapacitor exhibit a peak value of 1.5 F s(-1-α) in the mid-frequency range, followed by a decrease at increased frequencies. Furthermore, these NPs were found to be the most effective agents for removing fluoride ions. In a modified one-pot synthetic approach, the hydrogel (Hy) was synthesized using PVA and glycerine in an aqueous medium at 100 °C. The composite Hy membranes were prepared by mixing Hy with these NPs, which were applied to remove fluoride ions efficiently within the pH range of 1-10 from the aqueous medium through adsorption, yielding defluorinated water. The adsorption process of fluoride ions was correlated with the Freundlich and Langmuir isotherms, with pseudo-second-order kinetics as the preferred approach. The zirconium ferrite NPs and the composite Hy membranes were characterized through various characterization techniques, i.e., XRD, XPS, FTIR, solid UV-visible spectroscopy, STA, FESEM, HRTEM, and BET surface area analysis.
Zirconium ferrite nanoparticles as smart materials for energy and environmental applications: fractional-order supercapacitors, reservoirs of F(-) ions, and efficient electrocatalysts for water splitting.
阅读:14
作者:Sahoo Amit, Acharya Achyuta N, Jena Priyambada, Moonis M, Biswal J P, Swain S, Tripathy M C
| 期刊: | Nanoscale Advances | 影响因子: | 4.600 |
| 时间: | 2025 | 起止号: | 2025 Aug 14 |
| doi: | 10.1039/d5na00578g | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
