We have developed a method along with a Python-based analysis tool to capture images and produce flow-cytometry-like data for adherent cell culture utilizing simple accessible microscopes. Leveraging the recently developed generalist algorithms for cell segmentation, our approach efficiently quantifies single-cell fluorescence signals. We demonstrated the utility of this method by screening a set of 88 prime editing conditions using the integration of mNeonGreen2(11) as a reporter.
Accessible and accurate cytometry analysis of adherent cells using fluorescence microscopes.
阅读:5
作者:Foyt Daniel, Kuang Yiming, Rehem Samma, Yserentant Klaus, Huang Bo
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 May 28; 15(1):18691 |
| doi: | 10.1038/s41598-025-01957-5 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
