Accessible and accurate cytometry analysis of adherent cells using fluorescence microscopes.

阅读:17
作者:Foyt Daniel, Kuang Yiming, Rehem Samma, Yserentant Klaus, Huang Bo
We have developed a method along with a Python-based analysis tool to capture images and produce flow-cytometry-like data for adherent cell culture utilizing simple accessible microscopes. Leveraging the recently developed generalist algorithms for cell segmentation, our approach efficiently quantifies single-cell fluorescence signals. We demonstrated the utility of this method by screening a set of 88 prime editing conditions using the integration of mNeonGreen2(11) as a reporter.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。