Accessible and accurate cytometry analysis of adherent cells using fluorescence microscopes.

阅读:5
作者:Foyt Daniel, Kuang Yiming, Rehem Samma, Yserentant Klaus, Huang Bo
We have developed a method along with a Python-based analysis tool to capture images and produce flow-cytometry-like data for adherent cell culture utilizing simple accessible microscopes. Leveraging the recently developed generalist algorithms for cell segmentation, our approach efficiently quantifies single-cell fluorescence signals. We demonstrated the utility of this method by screening a set of 88 prime editing conditions using the integration of mNeonGreen2(11) as a reporter.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。