We have developed a method along with a python-based analysis tool to capture images and produce flow cytometry like data utilizing simple accessible microscopes. Utilizing the recently developed generalist algorithms for cell segmentation, our approach easily segments semi-adherent or suspended cells facilitating quantification of fluorescent intensity similar to flow cytometry. We have shown that our approach exhibits similar speed and enhanced sensitivity when compared to typical flow cytometry. The utility of our approach is demonstrated by screening a set of 88 prime editing conditions utilizing the integration of mNeonGreen(11) as a reporter.
Accessible and accurate cytometry analysis using fluorescence microscopes.
阅读:10
作者:Foyt Daniel, Kuang Yiming, Rehem Samma, Yserentant Klaus, Huang Bo
| 期刊: | bioRxiv | 影响因子: | 0.000 |
| 时间: | 2025 | 起止号: | 2025 Jan 24 |
| doi: | 10.1101/2025.01.22.634380 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
