Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition. They are primarily made of composites containing glass and carbon fibers embedded in polymer matrices such as epoxies and polyester resins. This study presents an innovative approach to analyzing and valorizing these composite wastes. The research methodology incorporates integrated processing and analysis techniques, including mechanical waste treatment using a novel compression milling process, instead of traditional knife mills, which reduces wear on the milling tools. Based on the differences in the structure and colors of the materials, 15 different kinds of samples named WT1-WT15 were distinguished from crushed wind turbines, enabling a detailed analysis of their physicochemical properties and the identification of the constituent components. Fourier transform infrared spectroscopy (FTIR) identified key functional groups, confirming the presence of thermoplastic polymers (PET, PE, and PP), epoxy and polyester resins, wood, and fillers such as glass fibers. Thermogravimetric analysis (TGA) provided insights into thermal stability, degradation behavior, and the heterogeneity of the samples, indicating a mix of organic and inorganic constituents. Differential scanning calorimetry (DSC) further characterized phase transitions in polymers, revealing variations in thermal properties among samples. The fractionation process was carried out using both wet and dry methods, allowing for a more effective separation of components. Based on the wet separation process, three fractions-GF1, GF2, and GF3-along with other components were obtained. For instance, in the case of the GF1 < 40 µm fraction, thermogravimetric analysis (TGA) revealed that the residual mass is as high as 89.7%, indicating a predominance of glass fibers. This result highlights the effectiveness of the proposed methods in facilitating the efficient recovery of high-value materials.
Treatment and Valorization of Waste Wind Turbines: Component Identification and Analysis.
阅读:6
作者:Zhao Xiaohan, PakuÅa Daria, Frydrych MiÅosz, Konieczna Roksana, Sztorch Bogna, Kozera RafaÅ, Liu Hongzhi, Zhou Hui, Przekop Robert E
| 期刊: | Materials | 影响因子: | 3.200 |
| 时间: | 2025 | 起止号: | 2025 Jan 20; 18(2):468 |
| doi: | 10.3390/ma18020468 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
