Current integrated photonics typically utilizes the dynamical phase associated resonant on-chip components, leading to bandwidth-limited devices with perturbation-sensitive performance. Multi-mode geometric phase matrix, arising from the non-Abelian holonomy which is a non-resonant and global effect, has been recently introduced to integrated photonics for the design of broadband and robust on-chip photonic devices. Achieving reconfigurable on-chip non-Abelian photonic devices is a crucial step towards practical applications, which however remains elusive. Here, we propose a universal approach by employing the thermo-optic effect to tune the system's Hamiltonian and thus the holonomy induced geometric phase matrix. We implement this concept in double-layered polymer integrated platforms, experimentally demonstrating a four-mode non-Abelian braiding device comprising six sets of tunable two-mode braiding building blocks. Through modulations, the device can be reconfigured to generate up to 24 unitary matrices belonging to the braid group B(4). Our work paves the way for non-Abelian integrated photonics towards abundant applications.
Reconfigurable non-Abelian integrated photonics.
阅读:24
作者:Sun Shijie, Wang Xibin, Li Shangrong, Zhang Daming, Chen Qi-Dai, Zhang Xu-Lin
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Aug 2; 16(1):7089 |
| doi: | 10.1038/s41467-025-62481-8 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
