AIM: Hypertensive nephropathy is a common complication of hypertension. However, no effective measures are currently available to prevent the progression of renal insufficiency. Gasdermin D (GSDMD) is a crucial mediator of pyroptosis that induces an excessive inflammatory response. In the present study, we aimed to determine the effect of GSDMD on the pathogenesis of hypertensive nephropathy, which may provide new insights into the treatment of hypertensive nephropathy. METHODS: C57BL/6 (wild-type, WT) and Gsdmd knockout (Gsdmd(-/-)) mice were subcutaneously infused with angiotensin II (Ang II) via osmotic mini-pumps to establish a hypertensive renal injury model. Recombinant adeno-associated virus serotype 9 (AAV9) carrying GSDMD cDNA was used to overexpress GSDMD. Renal function biomarkers, histopathological changes, and inflammation and fibrosis indices were assessed. Transcriptome sequencing (RNA-seq) and cleavage under targets and mentation (CUT & Tag) experiments were performed to identify the downstream pathogenic mechanisms of GSDMD in hypertensive nephropathy. RESULTS: GSDMD was activated in the kidneys of mice induced by Ang II (P < 0.001). This activation was primarily observed in the renal tubular epithelial cells (P < 0.0001). GSDMD deficiency attenuated renal injury and fibrosis induced by Ang II (P < 0.0001), whereas Gsdmd overexpression promoted renal injury and fibrosis (P < 0.01). Mechanistically, GSDMD increased Ang II-induced GATA binding protein 2 (GATA2) transcription factor expression (P < 0.01). GATA2 also bound to the aquaporin 4 (Aqp4) promoter sequence and facilitated Aqp4 transcription (P < 0.001), leading to renal injury and fibrosis. Moreover, treatment with GI-Y1, an inhibitor of GSDMD, alleviated Ang II-induced renal injury and fibrosis (P < 0.01). CONCLUSION: GSDMD plays an important role in the development of hypertensive nephropathy. Targeting GSDMD may be a therapeutic strategy for the treatment of hypertensive nephropathy.
GSDMD Mediates Ang II-Induced Hypertensive Nephropathy by Regulating the GATA2/AQP4 Signaling Pathway.
阅读:14
作者:Fan Xiaoxi, Zhang Wenli, Zheng Ruihan, Zhang Yucong, Lai Xianhui, Han Jibo, Fang Zimin, Han Bingjiang, Huang Weijian, Ye Bozhi, Dai Shanshan
| 期刊: | Journal of Inflammation Research | 影响因子: | 4.100 |
| 时间: | 2024 | 起止号: | 2024 Nov 5; 17:8241-8259 |
| doi: | 10.2147/JIR.S488553 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
