Foxtail millet (Setaria italica), a cereal crop in China, is renowned for its resilience to abiotic stresses, including saline-alkali conditions. This study examined the transcriptomic and metabolomic responses of two contrasting foxtail millet varieties, B103 (tolerant) and B323 (sensitive), under saline-alkali stress. Physiological analysis showed that B103 exhibited higher growth parameters and chlorophyll content than B323, highlighting its enhanced tolerance. Transcriptomic analysis identified differentially expressed genes (DEGs) enriched in stress-response pathways such as phenylpropanoid biosynthesis, flavonoid metabolism and calcium signaling. Metabolomic profiling revealed differentially accumulated metabolites (DMs) involved in energy and secondary metabolism, including citrate, fumarate and flavonoids. Integration of DEGs and DMs revealed key gene-metabolite interactions, particularly those involving the nicotinamide compound and three candidate genes Si9g20070, Si7g22360 and Si5g39810, for future functional validation, which may contribute to stress adaptation. Dynamic clustering of gene expression trends highlighted the importance of rapid stress responses. These findings establish a molecular framework for understanding saline-alkali stress tolerance and provide genetic resources for developing stress-resilient foxtail millet varieties.
Integrative Transcriptomic and Metabolomic Insights Into Saline-Alkali Stress Tolerance in Foxtail Millet.
阅读:19
作者:Han Mengxia, Tan Qing, Yang Yulu, Zhang Hui, Wang Xingchun, Li Xukai
| 期刊: | Plants-Basel | 影响因子: | 4.100 |
| 时间: | 2025 | 起止号: | 2025 May 24; 14(11):1602 |
| doi: | 10.3390/plants14111602 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
