Cognitive impairment is common in heart failure patients, contributing to morbidity and mortality. This impairment may be linked to neuroinflammation in heart failure. However, the primacy of the heart-brain axis remains to be completely understood. Here, we elucidate the potential effects of myocardial injury on pathways and inflammatory mediators responsible for cognitive impairment using a rodent myocardial injury model. The results demonstrate direct extracellular vesicle (EV)-mediated heart-brain crosstalk and the glial uptake of cardiac EVs. In addition, brain inflammation was also elicited following myocardial injury. Moreover, cardiac EVs promote brain microglial cell activation in vitro, potentially mediated by EV-enriched micro-RNAs (miRNAs). miRNA-21 was selectively up-regulated and secreted by cardiac cells under stress via EVs and contributed to a proinflammatory response in microglia in vitro. Under cardiac stress, cardiac-secreted EVs abundant with miRNA-21 communicate with the brain and are associated with microglial activation, which may be responsible for neuroinflammation and neurotoxicity following myocardial injury.
Cardiac Injury Regulates Neuroinflammation Through Extracellular Vesicle-Mediated Heart-Brain Crosstalk.
阅读:2
作者:Li Qingxuan, Hamdalla Ramzi H, Dhyani Neha, Sun Lijun, Gao Lie, Rudebush Tara L, Zucker Irving H, Tian Changhai
| 期刊: | Jacc-Basic To Translational Science | 影响因子: | 7.200 |
| 时间: | 2025 | 起止号: | 2025 Jul;10(7):101307 |
| doi: | 10.1016/j.jacbts.2025.05.002 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
