Fibroblast growth factor 10 ameliorates renal ischaemia-reperfusion injury by attenuating mitochondrial damage

成纤维细胞生长因子 10 通过减轻线粒体损伤改善肾缺血再灌注损伤

阅读:6
作者:Lixia Yu, Xiaojiao Yi, Cailong Yu, Fugen Wang, Xiaohua Tan

Abstract

Ischaemia-reperfusion (I/R) injury is one of the leading causes of acute kidney injury (AKI). Its pathologic mechanism is quite complex, involving oxidative stress, inflammatory response, autophagy, and apoptosis. Fibroblast growth factor 10 (FGF10) and 5-hydroxydecanoate (5-HD) play essential roles in kidney injury. Rats were divided into four groups: (i) sham group, sham-operated animals with an unconstructed renal artery; (ii) I/R group, kidneys were subjected to 50 min of ischaemia followed by reperfusion for 2 days; (iii) I/R + FGF10 group, animals treated with 0.5 mg/kg FGF10 (i.p.) 1 h before ischaemia; and (iv) 5-HD group, animals treated with 5 mg/kg 5-HD (i.m.) 30 min before FGF10 treatment. Renal injury, apoptosis damage, mitochondrial oxidative damage, mitochondrial membrane potential (MMP), and expression of the ATP-sensitive K+ (KATP) channel subunit Kir6.2 were evaluated. FGF10 treatment significantly alleviated I/R-induced elevation in the serum creatinine level and the number of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling-positive tubular cells in the kidney. In addition, FGF10 dramatically ameliorated renal mitochondrial-related damage, including reducing mitochondrial-dependent apoptosis, alleviating oxidative stress, maintaining the mitochondrial membrane potential, and opening the mitochondrial KATP channels. The protective effect of FGF10 was significantly compromised by the ATP-dependent potassium channel blocker 5-HD. Our data suggest that FGF10 offers effective protection against I/R and improves animal survival by attenuating mitochondrial damage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。