A bacterial pathogen induces developmental slowing by high reactive oxygen species and mitochondrial dysfunction in Caenorhabditis elegans

细菌病原体通过高活性氧和线粒体功能障碍导致秀丽隐杆线虫发育迟缓

阅读:5
作者:Zeynep Mirza, Albertha J M Walhout, Victor Ambros

Abstract

Host-pathogen interactions are complex by nature, and the host developmental stage increases this complexity. By utilizing Caenorhabditis elegans larvae as the host and the bacterium Pseudomonas aeruginosa as the pathogen, we investigated how a developing organism copes with pathogenic stress. By screening 36 P. aeruginosa isolates, we found that the CF18 strain causes a severe but reversible developmental delay via induction of reactive oxygen species (ROS) and mitochondrial dysfunction. While the larvae upregulate mitophagy, antimicrobial, and detoxification genes, mitochondrial unfolded protein response (UPRmt) genes are repressed. Either antioxidant or iron supplementation rescues the phenotypes. We examined the virulence factors of CF18 via transposon mutagenesis and RNA sequencing (RNA-seq). We found that non-phenazine toxins that are regulated by quorum sensing (QS) and the GacA/S system are responsible for developmental slowing. This study highlights the importance of ROS levels and mitochondrial health as determinants of developmental rate and how pathogens can attack these important features.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。