A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo

一种定量和多路复用的方法揭示体内肿瘤抑制的适应度状况

阅读:5
作者:Zoë N Rogers, Christopher D McFarland, Ian P Winters, Santiago Naranjo, Chen-Hua Chuang, Dmitri Petrov, Monte M Winslow

Abstract

Cancer growth is a multistage, stochastic evolutionary process. While cancer genome sequencing has been instrumental in identifying the genomic alterations that occur in human tumors, the consequences of these alterations on tumor growth remain largely unexplored. Conventional genetically engineered mouse models enable the study of tumor growth in vivo, but they are neither readily scalable nor sufficiently quantitative to unravel the magnitude and mode of action of many tumor-suppressor genes. Here, we present a method that integrates tumor barcoding with ultradeep barcode sequencing (Tuba-seq) to interrogate tumor-suppressor function in mouse models of human cancer. Tuba-seq uncovers genotype-dependent distributions of tumor sizes. By combining Tuba-seq with multiplexed CRISPR-Cas9-mediated genome editing, we quantified the effects of 11 tumor-suppressor pathways that are frequently altered in human lung adenocarcinoma. Tuba-seq enables the broad quantification of the function of tumor-suppressor genes with unprecedented resolution, parallelization, and precision.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。