Gp96 deficiency affects TLR4 functionality and impairs ERK and p38 phosphorylation

Gp96 缺陷会影响 TLR4 功能并损害 ERK 和 p38 磷酸化。

阅读:2
作者:Jesus Cosin-Roger ,Marianne R Spalinger ,Pedro A Ruiz ,Claudia Stanzel ,Anne Terhalle ,Lutz Wolfram ,Hassan Melhem ,Kirstin Atrott ,Silvia Lang ,Isabelle Frey-Wagner ,Michael Fried ,Michael Scharl ,Martin Hausmann ,Gerhard Rogler

Abstract

Gp96 is an endoplasmic reticulum chaperone for multiple protein substrates. Its lack in intestinal macrophages of Crohn's disease (CD) patients is correlated with loss of tolerance against the host gut flora. Gp96 has been stablished to be an essential chaperone for Toll-like receptors (TLRs). We studied the impact of gp96-knockdown on TLR-function in macrophages. TLR2 and TLR4 expression was only decreased but not abolished when gp96 was knocked-down in cell lines, whereas in a monocyte/macrophage specific knock-out mouse model (LysMCre) TLR4 was abolished, while TLR2 was still present. Lipopolysaccharide (LPS)-induced NF-κB activation was still observed in the absence of gp96, and gp96-deficient macrophages were able to up-regulate surface TLR4 upon LPS treatment, suggesting that there is another chaperone involved in the folding of TLR4 upon stress responses. Moreover, LPS-dependent pro-inflammatory cytokines were still expressed, although to a lesser extent in the absence of gp96, which reinforces the fact that gp96 is involved in regulating signaling cascades downstream of TLR4 are impaired upon loss of gp96. In addition, we have also found a reduced phosphorylation of ERK and p38 kinases and an impaired response upon CSF1R activation in gp96 deficient macrophages. Our findings indicate that the loss of gp96 not only impairs TLR4 signaling, but is also associated with a diminished phosphorylation of ERK and mitogen-activated stress kinases resulting in an impaired signalling through several receptors, including CSF1R.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。