TGF-β2 Induces Epithelial-Mesenchymal Transitions in 2D Planer and 3D Spheroids of the Human Corneal Stroma Fibroblasts in Different Manners

TGF-β2以不同的方式诱导人角膜基质成纤维细胞的二维平面和三维球状体发生上皮-间质转化

阅读:2
作者:Araya Umetsu ,Yosuke Ida ,Tatsuya Sato ,Masato Furuhashi ,Hiroshi Ohguro ,Megumi Watanabe

Abstract

To examine the epithelial-mesenchymal transition (EMT) that is induced on the human corneal stroma, two- and three-dimensional (2D and 3D) cultures of human corneal stroma fibroblasts (HCSFs) were used. In this study, HCSF 2D monolayers and 3D spheroids were characterized by (1) scanning electron microscopy (SEM), (2) trans-endothelial electrical resistance (TEER) measurements and fluorescein isothiocyanate (FITC)-dextran permeability, (3) cellular metabolic measurements, (4) the physical properties of 3D HCSF spheroids, and (5) the extracellular matrix (ECM) molecule gene expressions, including collagen (COL) 1, 4 and 6, and fibronectin (FN), a tissue inhibitor of metalloproteinase (TIMP) 1-4, matrix metalloproteinase (MMP) 2, 3, 9 and 14, and several endoplasmic reticulum (ER) stress-related factors. In the 2D HCSFs, TGF-β2 concentration-dependently generated (1) a considerable increase in ECM deposits revealed by SEM, (2) an increase in TEER values and a decrease in FITC-dextran permeability, (3) increases in both mitochondrial and glycolytic functions, and a substantial upregulation of COL1, COL4, FN, αSMA, TIMP1, TIMP, and most ER stress-related genes and the downregulation of COL6 and MMP3. In the case of 3D spheroids, TGF-β2 induced the downsizing and stiffening of 3D spheroids and the upregulation of COL6, MMP14, and most ER stress-related genes. These findings suggest that TGF-β2 significantly induced a number of EMT-associated biological events including planar proliferation, cellular metabolic functions, and the production of ECM molecules in the 2D cultured HCSF cells, but these effects were significantly less pronounced in the case of 3D HCSF spheroids. Keywords: TGF-β; corneal injury model; human corneal stroma fibroblasts (HCSFs); three-dimensional spheroid culture.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。