The Sesquiterpenes(E)-ß-Farnesene and (E)-α-Bergamotene Quench Ozone but Fail to Protect the Wild Tobacco Nicotiana attenuata from Ozone, UVB, and Drought Stresses

倍半萜烯类化合物(E)-β-法呢烯和(E)-α-佛手柑烯能够抑制臭氧,但不能保护野生烟草(Nicotiana attenuata)免受臭氧、UVB和干旱胁迫的影响。

阅读:2
作者:Evan C Palmer-Young ,Daniel Veit ,Jonathan Gershenzon ,Meredith C Schuman

Abstract

Among the terpenes, isoprene (C5) and monoterpene hydrocarbons (C10) have been shown to ameliorate abiotic stress in a number of plant species via two proposed mechanisms: membrane stabilization and direct antioxidant effects. Sesquiterpene hydrocarbons (C15) not only share the structural properties thought to lend protective qualities to isoprene and monoterpene hydrocarbons, but also react rapidly with ozone, suggesting that sesquiterpenes may similarly enhance tolerance of abiotic stresses. To test whether sesquiterpenes protect plants against ozone, UVB light, or drought, we used transgenic lines of the wild tobacco Nicotiana attenuata. The transgenic plants expressed a maize terpene synthase gene (ZmTPS10) which produced a blend of (E)-ß-farnesene and (E)-α-bergamotene, or a point mutant of the same gene (ZmTPS10M) which produced (E)-ß-farnesene alone,. (E)-ß-farnesene exerted a local, external, and transient ozone-quenching effect in ozone-fumigated chambers, but we found no evidence that enhanced sesquiterpene production by the plant inhibited oxidative damage, or maintained photosynthetic function or plant fitness under acute or chronic stress. Although the sesquiterpenes (E)-ß-farnesene and (E)-α-bergamotene might confer benefits under intermittent heat stress, which was not tested, any roles in relieving abiotic stress may be secondary to their previously demonstrated functions in biotic interactions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。