MatchMixeR: a cross-platform normalization method for gene expression data integration

MatchMixeR:一种用于基因表达数据整合的跨平台标准化方法

阅读:2
作者:Serin Zhang ,Jiang Shao ,Disa Yu ,Xing Qiu ,Jinfeng Zhang

Abstract

Motivation: Combining gene expression (GE) profiles generated from different platforms enables previously infeasible studies due to sample size limitations. Several cross-platform normalization methods have been developed to remove the systematic differences between platforms, but they may also remove meaningful biological differences among datasets. In this work, we propose a novel approach that removes the platform, not the biological differences. Dubbed as 'MatchMixeR', we model platform differences by a linear mixed effects regression (LMER) model, and estimate them from matched GE profiles of the same cell line or tissue measured on different platforms. The resulting model can then be used to remove platform differences in other datasets. By using LMER, we achieve better bias-variance trade-off in parameter estimation. We also design a computationally efficient algorithm based on the moment method, which is ideal for ultra-high-dimensional LMER analysis. Results: Compared with several prominent competing methods, MatchMixeR achieved the highest after-normalization concordance. Subsequent differential expression analyses based on datasets integrated from different platforms showed that using MatchMixeR achieved the best trade-off between true and false discoveries, and this advantage is more apparent in datasets with limited samples or unbalanced group proportions. Availability and implementation: Our method is implemented in a R-package, 'MatchMixeR', freely available at: https://github.com/dy16b/Cross-Platform-Normalization. Supplementary information: Supplementary data are available at Bioinformatics online.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。