Low iron-induced small RNA BrrF regulates central metabolism and oxidative stress responses in Burkholderia cenocepacia

低铁诱导的小 RNA BrrF 调节伯克霍尔德菌的中心代谢和氧化应激反应

阅读:7
作者:Andrea M Sass, Tom Coenye

Abstract

Regulatory small RNAs play an essential role in maintaining cell homeostasis in bacteria in response to environmental stresses such as iron starvation. Prokaryotes generally encode a large number of RNA regulators, yet their identification and characterisation is still in its infancy for most bacterial species. Burkholderia cenocepacia is an opportunistic pathogen with high innate antimicrobial resistance, which can cause the often fatal cepacia syndrome in individuals with cystic fibrosis. In this study we characterise a small RNA which is involved in the response to iron starvation, a condition that pathogenic bacteria are likely to encounter in the host. BrrF is a small RNA highly upregulated in Burkholderia cenocepacia under conditions of iron depletion and with a genome context consistent with Fur regulation. Its computationally predicted targets include iron-containing enzymes of the tricarboxylic acid (TCA) cycle such as aconitase and succinate dehydrogenase, as well as iron-containing enzymes responsible for the oxidative stress response, such as superoxide dismutase and catalase. Phenotypic and gene expression analysis of BrrF deletion and overexpression mutants show that the regulation of these genes is BrrF-dependent. Expression of acnA, fumA, sdhA and sdhC was downregulated during iron depletion in the wild type strain, but not in a BrrF deletion mutant. TCA cycle genes not predicted as target for BrrF were not affected in the same manner by iron depletion. Likewise, expression of sodB and katB was dowregulated during iron depletion in the wild type strain, but not in a BrrF deletion mutant. BrrF overexpression reduced aconitase and superoxide dismutase activities and increased sensitivity to hydrogen peroxide. All phenotypes and gene expression changes of the BrrF deletion mutant could be complemented by overexpressing BrrF in trans. Overall, BrrF acts as a regulator of central metabolism and oxidative stress response, possibly as an iron-sparing measure to maintain iron homeostasis under conditions of iron starvation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。