Δ(9) Tetrahydrocannabinol attenuates Staphylococcal enterotoxin B-induced inflammatory lung injury and prevents mortality in mice by modulation of miR-17-92 cluster and induction of T-regulatory cells

Δ(9)四氢大麻酚通过调节 miR-17-92 簇和诱导 T 调节细胞减轻葡萄球菌肠毒素 B 诱导的炎症性肺损伤并防止小鼠死亡

阅读:5
作者:R Rao, P S Nagarkatti, M Nagarkatti

Background and purpose

Staphylococcal enterotoxin B (SEB) is a potent activator of Vβ8+T-cells resulting in the clonal expansion of ∼30% of the T-cell pool. Consequently, this leads to the release of inflammatory cytokines, toxic shock, and eventually death. In the current study, we investigated if Δ(9) tetrahydrocannabinol (THC), a cannabinoid known for its anti-inflammatory properties, could prevent SEB-induced mortality and alleviate symptoms of toxic shock. Experimental approach: We investigated the efficacy of THC against the dual administration (intranasal and i.p.) of SEB into C3H/HeJ mice based on the measurement of SEB-mediated clinical parameters, including cytokine production, cellular infiltration, vascular leak, and airway resistance. In addition, the molecular mechanism of action was elucidated in vitro by the activation of splenocytes with SEB. Key

Purpose

Staphylococcal enterotoxin B (SEB) is a potent activator of Vβ8+T-cells resulting in the clonal expansion of ∼30% of the T-cell pool. Consequently, this leads to the release of inflammatory cytokines, toxic shock, and eventually death. In the current study, we investigated if Δ(9) tetrahydrocannabinol (THC), a cannabinoid known for its anti-inflammatory properties, could prevent SEB-induced mortality and alleviate symptoms of toxic shock. Experimental approach: We investigated the efficacy of THC against the dual administration (intranasal and i.p.) of SEB into C3H/HeJ mice based on the measurement of SEB-mediated clinical parameters, including cytokine production, cellular infiltration, vascular leak, and airway resistance. In addition, the molecular mechanism of action was elucidated in vitro by the activation of splenocytes with SEB. Key

Results

Exposure to SEB resulted in acute mortality, while THC treatment led to 100% survival of mice. SEB induced the miRNA-17-92 cluster, specifically miRNA-18a, which targeted Pten (phosphatase and tensin homologue), an inhibitor of the PI3K/Akt signalling pathway, thereby suppressing T-regulatory cells. In contrast, THC treatment inhibited the individual miRNAs in the cluster, reversing the effects of SEB. Conclusions and implications: We report, for the first time a role for the miRNA 17-92 cluster in SEB-mediated inflammation. Furthermore, our results suggest that THC is a potent anti-inflammatory compound that may serve as a novel therapeutic to suppress SEB-induced pulmonary inflammation by modulating critical miRNA involved in SEB-induced toxicity and death.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。