Inhibition of SK Channels in VTA Affects Dopaminergic Neurons to Improve the Depression-Like Behaviors of Post-Stroke Depression Rats

抑制中脑腹侧被盖区SK通道影响多巴胺能神经元改善卒中后抑郁大鼠抑郁样行为

阅读:5
作者:Anqi Wang #, Yujia Zhou #, Huangying Chen, Jiawei Jin, Yingqi Mao, Shuiliang Tao, Tao Qiu

Conclusion

This study suggests that SK channel activation following stroke contributes to depression-related behaviors in PSD rats through increased expression of DA neurons in the VTA. And depression-related behavior is improved in PSD rats by inhibiting the SK channels. The results of this study provide a new understanding of PSD pathogenesis and the possibility of developing new strategies to prevent PSD by targeting SK channels.

Methods

Four groups of Sprague-Dawley rats were randomly divided: Control, PSD, SK channel inhibitor (apamin) and SK channel activator (CyPPA) groups. In both control and CyPPA groups, sham surgery was performed. In the other two groups, middle cerebral arteries were occluded. The behavioral indicators related to depression in different groups were compared. Immunofluorescence was used to measure the activity of DA neurons in the VTA, while qRT-PCR was used to assess the expression of SK channel genes.

Purpose

This study aimed to investigate the effect of small-conductance calcium-activated potassium channels (SK channels) on the dopaminergic (DA) neuron pathways in the ventral tegmental area (VTA) during the pathogenesis of post-stroke depression (PSD) and explore the improvement of PSD by inhibiting the SK channels. Patients and

Results

The results showed that apamin treatment improved behavioral indicators related to depression compared to the PSD group. Furthermore, the qRT-PCR analysis revealed differential expression of the KCNN1 and KCNN3 subgenes of the SK channels in each group. Immunofluorescence analysis revealed an increase in the expression of DA neurons in the VTA of the PSD group, which was subsequently reduced upon apamin intervention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。