Knock-in of the Wt1 R394W mutation causes MDS and cooperates with Flt3/ITD to drive aggressive myeloid neoplasms in mice

Wt1 R394W 突变敲入可导致 MDS,并与 Flt3/ITD 协同作用,引发小鼠侵袭性髓系肿瘤

阅读:6
作者:Colleen E Annesley, Cara Rabik, Amy S Duffield, Rachel E Rau, Daniel Magoon, Li Li, Vicki Huff, Donald Small, David M Loeb, Patrick Brown

Abstract

Wilms tumor 1 (WT1) is a zinc finger transcriptional regulator, and has been implicated as both a tumor suppressor and oncogene in various malignancies. Mutations in the DNA-binding domain of the WT1 gene are described in 10-15% of normal-karyotype AML (NK-AML) in pediatric and adult patients. Similar WT1 mutations have been reported in adult patients with myelodysplastic syndrome (MDS). WT1 mutations have been independently associated with treatment failure and poor prognosis in NK-AML. Internal tandem duplication (ITD) mutations of FMS-like tyrosine kinase 3 (FLT3) commonly co-occur with WT1-mutant AML, suggesting a cooperative role in leukemogenesis. The functional role of WT1 mutations in hematologic malignancies appears to be complex and is not yet fully elucidated. Here, we describe the hematologic phenotype of a knock-in mouse model of a Wt1 mutation (R394W), described in cases of human leukemia. We show that Wt1 +/R394W mice develop MDS which becomes 100% penetrant in a transplant model, exhibit an aberrant expansion of myeloid progenitor cells, and demonstrate enhanced self-renewal of hematopoietic progenitor cells in vitro. We crossbred Wt1 +/R394W mice with knock-in Flt3 +/ITD mice, and show that mice with both mutations (Flt3 +/ITD/Wt1 +/R394W) develop a transplantable MDS/MPN, with more aggressive features compared to either single mutant mouse model.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。